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SUMMARY This paper examines the quasi-characteristic method for the solution of the Saint Venant equations governing 
the motion of flows, waves and floods in rivers and channels. The apparently new approach combines the more desirable 
features of traditional numerical methods, but does riot seem to suffer from their disadvantages. It is explicit, efficient, 
accurate and simple to implement. However, it is shown that the existing formulation has demanding stability criteria if 
friction, inflow and/or a non-prismoidal channel are considered. A simple modification of the method yields a scheme which 
has finite stability criteria but which are not particularly restrictive. The performance of the method is compared with 
existing numerical methods in the solution of a particular problem. 

1. INTRODUCTION 

Although the one-dimensional equations describing 
unsteady open channel flow were first derived by Saint 
Venant over a century ago, it has Only been in the last 
decade or so that significant research; and effort have been 
devoted to solving these equations using numerical methods. 

The Saint Venant equations can be written in the form: 

dh dh A du q , Ax 
D ' ' ) dt " dx B dx B U B 

and 
du_ 
dt -8 

dh_ 
dx ~ui^+SSo-gSf+ ^{ui- u), (2) 

h = depth of flow, 
u = mean velocity of flow, ■ : 

t = time, ' .■':■ ■■'. 
x = distance along channel, ! : 

g = acceleration due to gravity, 
A = cross-sectional area of flow, 
B = top width of flow, 

S0 = bed slope, 
Sf = resistance slope, given by the Manning equation 

= rru^/R4/3, in which R = hydraulic radius, 
n = resistance coefficient in the Manning equation, 

itj = x-Cofnponent of lateral inflow velocity, 
q = lateral inflow per unit length, and 

Ax = dA/dx I/, is a measure of the departure of the 
channel from a prismatic cross-section. 

The numerical solution of the two quasi-linear partial 
differential equations, (1) and (2), is usually accomplished 
by the use of the method of characteristics or finite 
difference methods. Although numerous models based on 
these approaches have been proposed, they all suffer from 
several limitations. The recently-developed method of 
quasi-characteristics combines the most desirable features 
of the more conventional methods (Fenton, 1985). The new 
approach is simple and explicit. In its original presentation, 
however, much was made of the fact that the method is 
unconditionally stable. Subsequent inclusion of friction, 
inflow and non-prismoidal terms showed that this was not 
the case. In this paper the stability of the method is exam­

ined and via the stability analysis a modification is proposed 
which renders the method stable. Stability criteria are 
developed, and these are found to be relatively generous. 

2. COMPUTATIONAL METHODS 

A survey of the computational methods used to solve the St. 
Venant equations numerically has been given by Zopppu 
and O'Neill (1981), and rather longer discussions are in 
Liggett and Cunge (1973) and Zoppou (.1979). The more 
common methods can be divided into three groups: those 
which use the method of characteristics, those which use 
finite difference methods, and those which use a combina­
tion of the two. 

2.1 Characteristic-based methods 

In the method of characteristics the original partial 
differential.equations are converted into an equivalent, but 
simpler, system of Ordinary differential equations: These 
equations, which are exact, are solved by integrating 
numerically over the region in (x, t) space. The numerical 
technique used to perform the required integration deter­
mines the accuracy of the solution. A disadvantage of. the 
method is that information is obtained at irregular values of 
x and /..However, the method is robust and can produce 
greater detail in regions of rapid change. It is ideal for 
modelling the propagation of bores. 

The method of Specified Interval Characteristics was 
developed to overcome the difficulties associated with the 
variable grid produced by the conventional characteristic 
method. Here a rectangular computational grid is 
employed, but the essential travelling wave nature of the 
characteristic method is retained. 

Unfortunately, there are circumstances where the applica­
tion of the method of characteristics will not provide a con­
venient formulation to a problem. For example, the trivial 
change of including off-stream storage produces a 
significant increase in the complexity of the characteristic 
equations (Liggett, 1968). Schemes based on the method 
of characteristics however are generally stable, accurate and 
efficient. 
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2.2 Finite-difference schemes 

Because of their general applicability, finite difference 
schemes have gained a wide acceptance for the numerical 
solution of hydraulic problems. In these schemes the par­
tial derivatives in the original equations are replaced by 
difference quotients, and the solution is obtained at discrete 
points on a rectangular lattice in the (x, t) plane. 

Finite difference schemes can be divided into two groups, 
either explicit or implicit. In explicit schemes the finite-
difference equations are written for each computational 
point on the forward time level in terms of the known 
values at grid points on the previous time level. The expli­
cit scheme produces a large number of simple linear equa­
tions which can be solved directly for the unknown depen­
dent variables on the forward time level. Strict adherence 
to the Courant criterion limiting the time step is necessary 
(Roache, 1972). This represents a severe limitation on the 
computational time increment that can be used by explicit 
models. With the exception of rapidly varying transients, 
explicit models are seldom used for the simulation of floods 
in natural channels. 

In implicit schemes the partial differential equations are 
written in finite difference form which relate unknowns on 
the forward time level to values on the previous time level. 
Usually a system of simultaneous equations must be solved. 
Although implicit finite difference schemes are stable under 
certain conditions, large time steps may be used at the 
sacrifice of accuracy. Unfortunately, the spatial and tem­
poral approximations used in finite difference schemes intro­
duce numerical diffusion. 

With the exception of numerical schemes based on the 
method of characteristics, all the conventional numerical 
methods neither reveal nor utilise the propagating wave 
features of the solutions they are describing. 

3. THE QUASI-CHARACTERISTIC METHOD 

This method has been described in detail by Fenton (1983, 
1985). It was claimed to be unconditionally stable, non-
diffusive, and exact for equations with constant coefficients. 
It will be shown below that the first statement is true only 
for idealised problems which do not involve friction, inflow 
or which consider prismoidal channels. 

Equations (1) and (2) can be shown, after some compli­
cated mathematics, to yield the relatively simple expressions 

h(x,t+ht)- | ( A + + A.)+ C(*'^(u+-u_) 2 2# 
+ it (q/B - uAx/B) + 0(It2), (3) 

and 
u(x,t+M),= i ( H + + M_).+ * fAK-h.) 

+ Lt(g(Sa- Sf(u))+ q(Ui-u)/A)+ 0(Af2) , (4) 

where ht' = h(x±, t), and «± = u(x±, t), (5) 

and where xt = x - Lt(u(x,t)± c(x, t)). . (6) 

Function values at (x, r+Ar) are obtained from values at 
(x± , r ) values which must be interpolated from known 
point values at time level t. As such, the equations provide 

an unusual method of solution. There is no attempt to 
approximate derivatives, they form an interpolation-only 
scheme for advancing the solution in time. The actual pro­
cess of interpolation can be carried out by any means, and 
in this formulation there is total freedom so to do. It was 
found that spline approximation, whether cubic, exponential 
or taut could be used with high accuracy. The method 
requires no low-order approximation using finite differences. 

The method is most closely related to grid-orientated 
characteristic schemes where straight line approximations to 
the characteristics are used. Indeed, such approximations 
would yield schemes such as, this. The important difference 
is, however, that the present approach can be used for sys­
tems where no characteristic invariants exist. Such a case 
is the stage-discharge formulation of the St. Venant equa­
tions,. for which equations equivalent to (3) and (4) were 
presented by Fenton (1985). The method is of first order 
accuracy, however schemes of higher accuracy can be 
developed (Fenton, 1983). 

In the 1985 paper Fenton presented the results of several 
model computations for the motion of waves in canals for 
the case of prismatic channels with no friction. The 
method was found to perform very well. However, when 
one of us (C.Z.) attempted to implement the method for 
some practical calculations including the effects of friction, 
the method was found to have finite stability criteria, and 
indeed to become unstable for time steps of the order of 
those used by conventional finite difference schemes. 

4. MODIFIED QUASI-CHARACTERISTIC SCHEME 

4.1 Stability analysis 

In this section a stability analysis of a family of quasi-
characteristic schemes is presented. This is much more 
than of theoretical interest because precise limits can be 
given for the stability of the original method. More impor­
tantly, however, it enables a simple modification to the ori­
ginal scheme which has much better stability properties. 
Here the scheme given by equations (3) and (4) is written 
in modified form 

h{x, t+ht)-Uh. + h_)+ £^1(u+-u.) 2 2g 
+ Lt(q/B-u,Ax/B) + 0(Af2) , (7) 

and 
u(x~t+U)- ±-(u+ + u_) + ■ * Ah + -h.) 

+ Lt(g(S0 -au2) + q(ur- u.)/A) + 0(Af2) , (8) 

where u in the inflow, friction and non-prismoidal terms 
has been replaced by M», an as-yet unknown velocity scale, 
and the friction slope St has been replaced by au2, where 
a is given by n2/R'3. In common with most stability ana­
lyses it is necessary to linearise these equations about some 
undisturbed state. The equations 

h = h0 + y , u = u0 + v, c = c0 + • ■ • , 

are substituted,, where c0= JglT0, d0 is the depth 
corresponding to a steady flow dominated by friction, u0 is 
the corresponding velocity such that S0 = au2, andy and v 
are small deviations from that steady flow. In this presen­
tation the dependence of n on h is ignored^ 
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Strictly speaking, one should consider the stability of small 
perturbations to the computational scheme, however it is 
notationally simpler to replace the scheme with its linear­
ised equivalent arid neglect the' terms Liij/B in equation 
(7) and LiquJA in equation (8) which play no role in the 
stability. The frictional term 
-2 Ltagu0v* after linearising. 

Af g (S0 - au 2) becomes 

7 2 < 4/32, (17) 

7202sin20< 4cos 2 0( l - P2<j>2), (18) 

' 7202sin20< 400cos0(l-00COS0). (19) 

4.2 Consideration of alternative schemes 

The linearised computational scheme becomes 

y(x,t+ht)- y(y + +y_) + ~(v+-v.) 

ht(y*Ax/B), 
and 

v(x,t+bt)= l<v++v_)+ ^-(y+-y-) ' 

- Ltagu0v*- Ltqy*/A,, 

(9) 

(10) 

in which x± = x - ht(u0±c0). 

It is assumed that y and v can be represented by a sine 
wave of complex amplitude Y(t) and V{t) respectively: 

y(x,t)=Y(t)eikx, and v(x,t)=V(t)eikx, (11) 

where k is the wavenumber of the* disturbance. Substitut­
ing these into equations. (9) and (10) and dividing through 
terms like exp ik (x -u0Lt) gives two equations which can 
be represented by the matrix difference equation 

iku0 if Y(f+Af)e" 
V(t+ Lt)e ikuo if 

where the matrix is given by 

cos l 8 

V{t) 

-(- / sin 8 - y<t>) 

(12) 

sin 8 cos 8 - 200 
(13) 

in which i = / - 1 , 7 is the non-dimensional number 
corresponding to the non-prismatic nature of the channel: 

htAxg 
CoB (14) 

8 is the dimehsionless number 8 = kc0 Lt, a measure of how 
far the computational solution proceeds in a single time 
step, fi is the dimensionless number dominated usually by 
friction in the channel but containing an inflow term: 

Af q 
0= htagua + 2 A (15) 

and where 0 is a phase number which-'depends on the velo­
city «» used in the computational scheme. It will be seen 
that the stability of the method rests on the choice of this 
quantity. 

For the scheme to be stable, the magnitudes of all the 
eigenvalues of the matrix must be less than unity (or equal 
to unity for neutral stability). The eigenvalues X are given 
by solutions of the quadratic 

A2+ 2A(00- cos0)+ 1 - 200COS0- i 70sin0= 0. (16) 

If the phase number <j> is real then using some tedious and 
rather lengthy mathematics involving the Schur-Cohn cri­
terion for the magnitudes of the eigenvalues gives the cri­
teria to be satisfied if the scheme is to be stable: 

Now, three computational alternatives will be considered. 

Scheme 1: u* = u(x, t) 

This is the original scheme as proposed in Fenton (1985), 
which yields equations (3) and (4), and is intuitively the 
most obvious to use: the velocity at point (x, t) to be used 
in non-prismatic, frictional and inflow terms is the velocity 
at that point and time. In this case it can be shown that 
0 = expiu0M, which is complex, and the criteria for stabil­
ity are very difficult to obtain analytically. Simple numeri­
cal experimentation with equation (16), showed that pro­
vided 171 < 20 it was conditionally stable, however 
demanding limitations were placed on the Courant number 
C = c0kt/kx (Lx the space step) in the computations. It 
is recommended that this scheme not be used. 

Scheme 2: u*= u(x - ubt, t) 

This is the most obvious alternative, as it builds in the 
advective nature of the flow problem: the appropriate velo­
city zX^x, t) is that .which, was upstream at a distance such 

In this case <f> = 1 that it arrives at points at time t + Af. 
and the criteria (17-19) become 

12< 

72< 

4/T 

cos2fl 
sin20 (\-n,, 

72< 4 ^ ( 1 - 0COS0),. 

(20) 

(21) 

(22) 

The presence of the. cosine function in the numerator of the 
right hand sides means that if $■* %/2 that.side goes to 
zero, and no stable computations. can be performed for a 
finite value of. 7. This can easily be shown to be a limit 
such that the Courant number C < 1/2, slightly better than 
in the above Scheme 1. ■ -

Scheme 3: «*= T- (« + + u_) 

' This scheme is an implicit recognition of the characteristic 
nature of the method: the velocity to use is the mean of that 
obtained by travelling along the quasi-characteristics, the 
same quantity used in the first term in equation (3). In 
this case, 0= cos 5, arid the occurrence of the cosine terms 
on both sides of the inequalities (17-19) means that they 
can be cancelled, giving the criteria 

72< 

72< 

72< 

4r 

sin20 

4/3 
sin29 

( l -0 2 cos 2 0) , 

( 1 - Pcos28). 

(23) 

(24) 

(25) 

To ensure that none of the right hand sides goes to zero it 
is necessary that j8 < 1, and then a comparison of the 
hierarchy of inequalities shows that the only criteria for sta-
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bility of the method is that 

0 < 1, and |-rI < 20. (26) 

The scheme is thus conditionally stable, but with criteria 
dependent only on the friction and non-prismoidal terms. 
Unlike many other computational schemes there is no res­
triction on the Courant number, and this scheme might 
prove useful in practice. It is helpful that the criterion for 
7 in equation (26) involves the magnitude of 7, so that it is 
the same for channels which increase or decrease in area. 

c0 while travelling over a slope S0. Thus an interpretation 
of the ratio y/0 is that it is a dimensionless measure of the 
non-prismoidal term, measuring the relative contribution to 
the rate of change of water depth caused by the non-
prismoidal term to the rate of change of the bottom eleva­
tion as experienced by a disturbance. Unfortunately it is 
not clear physically why this number should be limited to 2, 
as given by equation (26). 

5. COMPARISON OF NUMERICAL METHODS 

An important special case is that where the channel is 
prismoidal, but where friction exists. This is not a problem, 
as the criterion 0 < 1 can still be satisfied. It is interesting 
though, that even this method would be unstable for a non-
prismoidal channel with no friction. ' 

Iri view of the above, it seems that this is the scheme to use 
in practical computations, and so it is recommended that in 
all the additional terms in equations (3) and (4) that the 
local velocity u be replaced by 1/2 (u+ + «_). 

4.3 Interpretation of dimensionless numbers 

Consider the dimensionless number 0 as defined in equation 
(15): 

. 0-Ltnuo,\^f . 
Ltgau} ^ 1 Ltq 

+ 2 A un 

tigS 
°+

 X 
2 A (27) 

In this form 0 is capable of some physical interpretation. 
Equation (2) shows that gS0 is the contribution of bed 
slope to the fluid acceleration, hence the numerator Ar g S0 
is the change of velocity due to the bed slope alone over one 
computational time step. The term Lt g S0/u0 is then a 
dimensionless bed slope number, equal to the change of 
velocity of a free fluid particle in one time step divided by a 
typical actual fluid velocity. That is, it is the fractional 
change of fluid velocity due to the bed slope in a time step. 

The second term in-/? has a similar interpretation: Ltq is 
the volume of inflow entering the channel per unit length in 
a computational step, that is, it is the area rate of inflow, 
and dividing by the actual area A, the whole term is the 
fractional change of flow area in a computational step due 
to inflow. This would be expected to be very small. It is not 
clear physically why the weighted sum^>f these two frac­
tional contributions, one to fluid velocity, the other to flow 
area, should be less than unity (equation (26)), or any 
other definite amount. 

The other limitation on the flow step in equation (26), 
171 < 20 is also capable of some physical interpretation. 
Here the inflow contribution to 0 is neglected. Writing the 
ratio of the terms gives 

± =
 LtAx8 u0 = u0Ax/B 

0= c0B LtgS0
 = c0S0 ■ (28) 

From equation (1) the numerator is the contribution to the 
rate of increase of flow depth of the non-prismoidal term. 
The denominator is the rate of change of elevation experi­
enced by a disturbance as it propagates at the wave speed 

The results from the quasi-characteristic method for a 
model problem will be compared here with those from vari­
ous schemes, including a nonlinear implicit finite difference 
model with Newton Raphson iteration, a linear implicit 
finite difference model with the double sweep algorithm, an 
explicit method, specified interval characteristics and a 
characteristic grid based model. 

With the exception of the explicit model a similar computa­
tional time increment was adopted for all the models. The 
explicit model is based on the diffusion finite difference 
scheme with upwind and downwind differencing used at the 
boundaries (Roache, 1972). The specified interval and 
characteristic grid models used second order integration. 
The quasi-characteristic model is only of first order accu­
racy, however more accurate schemes may. be implemented 
(Fenton, 1983). 

A 10 kilometre long rectangular channel was chosen for the 
comparisons. It was 7.0 meters wide and had a bed slope 
of 0.001. The Manning resistance coefficient was 0.015. A 
steady uniform rating curve was used as the downstream 
boundary condition and a Pearson Type HI distribution was 
used to define the upstream discharge hydrograph. The 
simulated discharge hydrographs, at the downstream 
extremity of the channel, obtained using these numerical 
models are shown in Figure 1. For this example the results 
indicate that all the models produce very similar results. 
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Figure 1. Comparison between traditional numerical models 
and the quasi-characteristic method 
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Reducing the computational time increment produced closer 
agreement between the model results. The computer 
resources required and the computational time increment 
used for each scheme are shown in Table 1. The real 
advantage of the quasi-characteristic scheme lies in its sim­
plicity of coding, for it separates the operations of spatial 
approximation and time stepping, and the fundamental 
time-stepping can be carried out with the relatively simple 
expressions (7) and (8), where the velocity to be used in the 
non-wave-like terms, is u* = -r-("+ + " - ) • 

A computational time increment of 10 seconds was used for 
the explicit model because it was unstable for larger time 
increments. Although the explicit model is the most 
efficient the hypothetical example represents a rapid varia­
tion in comparison with floods in natural channels. For 
practical problems numerical models with an unrestricted 
computational time increment are the most flexible and 
efficient. With the exception of the explicit and the 

COMPUTATIONAL EXECUTION 
MODEL TIME TIME 

INCREMENT 
(seconds) (seconds) 

Linear implicit 
Nonlinear implicit 
Characteristic grid 
Specified interval 

Characteristics 
Explicit 
Quasi-Characteristics 

(Linear interpolant) 
(Cubic interpolant) 
(Taut interpolant) 

60 
60 

NA 

60 
10 

60 
60 
60 

13.2 
74.4 
13.5 

10.8 
3.5 

14.2 
14.7 
15.0 

Table 1. Computer resources required for the example. 
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Figure 2. Demonstration of computational instability 
beyond the theoretical limit 

nonlinear implicit finite difference model all the numerical 
models require similar computer resources. 

A range of computational time increments was used with 
the quasi-characteristic model. Figure 2 shows the 
behaviour of the scheme as it depends on the computational 
time step used. The different curves correspond to the error 
at different points in the reach at the end of computations, 
having reached a given time. The theoretical stability limit 
P < 1 gave a limiting time step of 240s, much greater than 
that used in computations. It can be seen that up until this 
time step, the accumulation of error is proportional to the 
time step, as would be expected from a scheme which has a 
truncation error of order 0(Af2), but where the number of 
time steps required to reach a certain time level is propor­
tional to At . Beyond this limiting time step, where the 
method is theoretically unstable, the error accumulation 
starts to fluctuate wildly, showing that the theoretical limit 
does seem to be valid in practice. 

6. CONCLUSIONS 

The quasi-characteristic model is explicit, efficient, and sim­
ple to implement. The method produces results at 
predefined computational points and any method of spatial 
approximation can be used. Perhaps the most notable 
feature of the method is that it seems to be a general tech­
nique applicable to a wide range of hydraulic problems. 
Higher order schemes are simple to formulate. 
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