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Use of the programs FOURIER, CNOIDAL and STOKES for
steady waves

John D. Fenton

Abstract

Latest change: In June 2019 I added an extra file to those output: SOLUTION-FLAT.RES, which is
a results file which is rather more easily read automatically – see §7.2.

This document has accompanied the Fourier package of programs for several years. In February
2012 both programs and this document received a major upgrade, and in May 2013 another upgrade,
plus incorporation of Stokes and cnoidal packages.

In a 2016 modification of this document, the introduction was re-written, putting the Fourier ap-
proach in context, and introducing the Stokes-Ursell number for the boundary between Stokes and
cnoidal theories.

In September 2018 I realised that sometime in recent years I had modified the program to allow for
the specification of infinite depth, but I had not noted this on the website or in this document.

Some years ago I upgraded both my cnoidal theory and Stokes theory packages, and distribute them
with the Fourier package, to provide something of a check on both. The operation of the cnoidal
package is described in §8 (with some program details in Appendix C), while the operation of the
Stokes package is described in §9. They use the same data files as the Fourier program, and so
implementation is simple. For two relatively low waves the results of computations are presented,
and for the long wave case program CNOIDAL agrees very closely with FOURIER, while for the
shorter wave case, so does the program STOKES. For a higher wave, described in the original
experimental paper as being close to breaking, the two theories still agreed well. Although the
packages based on theory can be used as a check, as done here, in general the Fourier program is to
be preferred.

This document: http://johndfenton.com/Steady-waves/Instructions.pdf
Home page of the programs: http://johndfenton.com/Steady-waves/Fourier.html
The FOURIER package: http://johndfenton.com/Steady-waves/Fourier.zip
The CNOIDAL package: http://johndfenton.com/Steady-waves/Cnoidal.zip
The STOKES package: http://johndfenton.com/Steady-waves/Stokes.zip
Both CNOIDAL and STOKES packages should be installed in a sub-directory of
that where FOURIER is, so that they can read the same data files.

1



Use of the programs FOURIER, CNOIDAL and STOKES for steady waves John D. Fenton

Recent revision history of FOURIER and this document Instructions.pdf

20 December 2018 Georgii Bocharov of COWI noted that in comment lines in Flowfield.res, where a
value of  should have been given, values of  were printed. Files INOUT.CPP
and the program FOURIER.EXE have been changed.

7 June 2019 I have added an extra file to those output: SOLUTION-FLAT.RES, which is a results
file which is rather more easily read automatically – see §7.2

24 July 2019 Thomas Lykke Andersen noted that for very long waves, say 70 times the water depth,
the cnoidal program had problems evaluating the elliptic functions in such an extreme
limit. The cnoidal program has been modified as described in Appendix C.5, and
the software simplified using accurate approximations for all elliptic functions and
integrals.

31 October 2022 Ibrahim Konuk noted that in the C program a couple of variables defined were not
necessary and that for deep water waves a quantity in the output in a Gnuplot comment
line was not defined. All corrected. I also modified the Gnuplot files so that the
graphical output mode "qt" is used, rather than "windows". For screen viewing it is
better.
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1. Introduction

Throughout coastal and ocean engineering the convenient model of a steadily-progressing periodic wave train is
used to give fluid velocities, surface elevations and pressures caused by waves, even in situations where the wave
is being slowly modified by effects of viscosity, current, topography and wind or where the wave propagates past a
structure with little effect on the wave itself. In these situations the waves do seem to show a surprising coherence
of form, and they can be modelled by assuming that they are propagating steadily without change, giving rise to
the so-called steady wave problem, which can be uniquely specified and solved in terms of three physical length
scales only: water depth, wave length and wave height. In many practical problems it is not the wavelength which
is known, but rather the wave period, and in this case, to solve the problem uniquely or to give accurate results for
fluid velocities, it is necessary to know the current on which the waves are riding. In practice, the knowledge of
the detailed flow structure under the wave is so important that it is usually considered necessary to solve accurately
this otherwise idealised model.

The main theories and methods for the steady wave problem which have been used are: Stokes theory, an explicit
theory based on an assumption that the waves are not very steep and which is best suited to waves in deeper water;
and cnoidal theory, an explicit theory for waves in shallower water. The accuracy of both depends on the waves
not being too high. In addition, both have a similar problem, that in the inappropriate limits of shallower water
for Stokes theory and deeper water for cnoidal theory, the series become slowly convergent and ultimately do not
converge.

An approach which overcomes this is the Fourier approximation method, which does not use series expansions
based on a small parameter, but obtains the solution numerically. It could be described as a nonlinear spectral
approach, where a series is assumed, each term of which satisfies the field equation, and then the coefficients are
found by solving a system of nonlinear equations. This is the basis of the computer program FOURIER. It has
been widely used to provide solutions in a number of practical and theoretical applications, providing solutions for
fluid velocities and pressures for engineering design. The method provides accurate solutions for waves up to very
close to the highest.

A review and comparison of the methods is given in Sobey, Goodwin, Thieke & Westberg (1987) and Fenton
(1990).

The aim of this article is to

• present an introduction to the Fourier method ,

• describe the data format required by the program FOURIER

• describe the output files which are produced and how they might be used, including some graph-plotting
files,

• to describe the basis of the Fourier method and the numerical techniques used,

• and to describe the use of the STOKES and CNOIDAL programs for comparison.

2. History

There have been two main analytical theories for solution of the problem of steadily-progressing water waves. The
first method was developed by Stokes (1847). The basic form of the solution is to use a Fourier series which is
capable of accurately approximating any periodic quantity, provided the coefficients in that series can be found.
The analytical solution is obtained by using perturbation expansions for the coefficients in the series and solving
linear equations at each order of approximation (Fenton 1985). The other theory is due to Korteweg and de Vries,
who in 1895 used an expansion in shallowness developed by Boussinesq and Rayleigh, but obtained periodic
solutions which they termed ”cnoidal” because the surface elevation is proportional to the square of the Jacobian
elliptic function cn(). The cnoidal solution shows the familiar long flat troughs and narrow crests of real waves in
shallow water. In the limit of infinite wavelength, it describes a solitary wave. Since Korteweg and de Vries there
have been a number of presentations of cnoidal theory, for higher orders consisting of series of cn functions. A
review article of cnoidal theory was given by Fenton (1999).

For high waves, both Stokes and cnoidal series have problems with convergence. A reasonable procedure, then, is
to calculate the coefficients by solving the full nonlinear equations numerically. This approach would be expected
to be more accurate than either of the perturbation expansion approaches, Stokes and cnoidal theory, because its

4



Use of the programs FOURIER, CNOIDAL and STOKES for steady waves John D. Fenton

only approximations would be numerical ones, and not the essential analytical ones of the perturbation methods.
Also, increasing the order of approximation would be a relatively trivial numerical matter without the need to
perform extra mathematical operations. This approach originated with Chappelear (1961). He assumed a Fourier
series in which each term identically satisfied the field equation throughout the fluid and the boundary condition on
the bottom. The values of the Fourier coefficients and other variables for a particular wave were then found by nu-
merical solution of the nonlinear equations obtained by substituting the Fourier series into the nonlinear boundary
conditions. He used the velocity potential  for the field variable and instead of using surface elevations directly
he used a Fourier series for that too. Dean (1965) instead used the stream function  for the field variable and
point values of the surface elevations, and obtained a rather simpler set of equations and called his method ”stream
function theory”. Rienecker & Fenton (1981) presented a method based exclusively on Fourier approximation,
whereas earlier work had used other lower-order numerical methods in part. The nonlinear equations were solved
by Newton’s method. The presentation emphasised the importance of knowing the current on which the waves
travel if the wave period is specified as a parameter.

A simpler method and computer program was given by Fenton (1988), where the necessary matrix of partial
derivatives was obtained numerically. In application of the method to waves which are high, in common with
other versions of the Fourier approximation method (Dalrymple & Solana 1986), it was found that it is sometimes
necessary to solve a sequence of lower waves, extrapolating forward in height steps until the desired height is
reached. For very long waves all these methods can occasionally converge to the wrong solution, that of a wave
one third of the length, which is obvious from the Fourier coefficients which result, as only every third is non-zero.
This problem can be avoided by using a sequence of height steps.

It is possible to obtain nonlinear solutions for waves on shear flows for special cases of the vorticity distribution.
For waves on a constant shear flow, Dalrymple (1974a), and a bi-linear shear distribution (Dalrymple 1974b) used
a Fourier method based on the approach of Dean (1965). The ambiguity caused by the specification of wave period
without current seems to have been ignored, however.

A review article of all theories was given by Fenton (1990). In this document we present the irrotational Fourier
theory and describe the program that accompanies it.

3. The applicability of analytical and numerical theories
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Figure 3-1. The region of possible steady waves, showing the theoretical highest waves (Williams) and the fitted equation (3.1),
as well as other results described in the text.

The range over which periodic solutions for waves exist is given in Figure 3-1, which shows limits to the existence
of waves determined by computational studies. The highest waves possible are shown by the red line, which is the
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approximation to the results of Williams (1981), presented as equation (32) in Fenton (1990):
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where is maximum crest-to-trough wave height,  is length, and  is mean depth.

Slightly worryingly, Nelson (1987 and 1994) has shown from many experiments in laboratories and the field,
that the maximum wave height achievable in practice is actually only  = 055. Further evidence for this
conclusion is provided by the results of Le Méhauté, Divoky & Lin (1968), whose maximum wave height tested
was = 0548, described as ”just below breaking”. It seems that there may be enough instabilities at work that
real waves propagating over a flat bed cannot approach the theoretical limit given by equation (3.1).

Stokes theory: In Fenton (1985) it was shown that, whereas the nominal expansion parameter for Stokes’
theory was  = 2 ( = 2 the wave number), in the long wave limit the effective expansion parameter was
actually  ()3, thereby re-discovering something that Stokes knew, that for his theory to be accurate  ()3

should be small. The relatively low order of the approximation and the nature of the effective expansion parameter
mean that Stokes theory is accurate for waves that are not long and not very high.

Cnoidal theory: A higher-order cnoidal theory was obtained by Fenton (1979). Whereas the nominal
expansion parameter was, where  is the trough depth of the water, it was shown that the effective expansion
parameter is actually () , where  is the elliptic parameter in the theory. For solitary waves  = 1. For
shorter waves, becomes smaller, hence, in this way the cnoidal theory breaks down in deep water (short waves)
in a manner complementary to that in which Stokes theory breaks down in shallow water (long waves). The 1979
paper presented results for fluid velocity which fluctuated wildly and were not accurate for high waves. In Fenton
(1990) the series were expressed in terms of a shallowness parameter and much better results were obtained for
fluid velocities.

Boundary of applicability between Stokes and cnoidal theory: Isobe, Nishimura & Horikawa (1982)
presented a unified view of Stokes and cnoidal theories. They proposed a boundary between areas of application
of Stokes and cnoidal theory of Ur = 25, where Ur is the Ursell number,

Ur =
2

3
=



()2
=

Measure of Nonlinearity
Measure of Shallowness

 (3.2)

Fenton (1990) proposed a boundary, based on a number of computations, however Hedges (1995) showed that a
more satisfactory and simpler boundary was Ur = 40 The only problem with that is an aesthetic one – that it is
not a nice number below which something is deemed to be small. Here we produce an alternative approach. In his
original work, Stokes’ required for his theory to be valid, that 1

2
()2 be small. It is easily shown that that

Stokes parameter is simply Ur82, so Stokes preceded Ursell by some 100 years. There is a strong temptation to
rename the number after Stokes; unfortunately there already is a Stokes number in viscous flow. The problem can
be solved in a sense if we call this the Stokes-Ursell number SU:

SU =
2

()
3
= 1

2

2

3
=

1

82
2

3
≈ Ur
80

 (3.3)

Now, with Hedges’ proposed boundary Ur = 40, we have the pleasant result that Stokes’ theory should not be
applied beyond a value of SU = 1

2
– a reasonable value for the limit beyond which a quantity ceases to be small.

All three programs, FOURIER, STOKES and CNOIDAL output the value of SU, in case it is of interest.

Fourier approximation: Results from Fourier methods show that accurate solutions can be obtained with
Fourier series even for waves close to the highest given by equation (3.1), and they seem to be the best way of
solving any steady water wave problem where accuracy is important. Sobey et al. (1987) made a comparison
between different versions of the numerical methods. They concluded that there was little to choose between them.

Generally the Fourier approach works well up to about 98% of the maximum height for a given wavelength/depth.
In application of the method to waves which are high and long, in common with other versions of the Fourier
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Figure 3-2. Free surface for a wave of length  = 50 and a height of  = 0786, 98% of the maximum height possible
for that length. There were  = 70 terms in the Fourier series, and the highest wave was computed from a sequence of 20
waves, using initial solutions extrapolated from two previous solutions.

approximation method, the Fourier method may converge to a wave of 1/3 of the wavelength (Dalrymple & Solana
1986, with comments by Fenton and Sobey noted in the References), but this can be remedied by solving for lower
waves of the same length and stepping upwards in height (Fenton 1988), as is done in the present program. The
Fourier approach does break down in the limit of very long and very high waves, when the spectrum of coefficients
becomes broad-banded and many terms have to be taken, as the Fourier approximation has to approximate both the
short sharp crest region and the long trough where very little changes. However, over a very wide range of lengths
and heights, the Fourier method works well. For example Figure 3-2 shows results for the surface profile using
the present Fourier program for a wave of length  = 50 and a height of  = 0786, 98% of the maximum
height possible for that length. It can be seen with the very long wave and the crest approaching sharp the Fourier
approximation has to work very hard indeed, and some slight oscillations are visible, but it has obtained a solution,
and there were no such oscillations in the fluid velocities.

Fenton (1995) developed a numerical cnoidal theory so that very long waves could be treated without difficulty,
however for wavelengths as long as 50 times the depth, the Fourier method provides good solutions.

4. The physical problem











 







Figure 4-1. One wave of a steady train, showing principal dimensions, co-ordinates and velocities

The problem considered is that of two-dimensional periodic waves propagating without change of form over a
layer of fluid on a horizontal bed, as shown in Figure 4-1. A co-ordinate system ( ) has its origin on the bed,
and waves pass through this frame with a velocity  in the positive  direction. It is this stationary frame which is
the usual one of interest for engineering and geophysical applications. Consider also a frame of reference ( )

moving with the waves at velocity , such that  =  + , where  is time, and  =  . It is easier to solve
the problem in this moving frame in which all motion is steady and then to compute the unsteady velocities. If
the fluid velocity in the ( ) frame is ( ), and that in the ( ) frame is ( ), the velocities are related by
 =  +  and  =  .

The physical dimensions are: crest-to-trough wave height, mean water depth , wavelength , and trough depth
. The surface elevation  is relative to the sea bed, so that it is the total depth of water at any place and time.
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5. The program FOURIER.EXE

All the files necessary can be found at http://johndfenton.com/Steady-waves/Fourier.zip. The executable program
is FOURIER.EXE.

6. Input data

It is well-known that a steadily-progressing periodic wave train is uniquely specified by three length scales, the
water depth , the wave height, and the wavelength , or, in terms of only two dimensionless quantities involving
these, such as dimensionless wave height  and dimensionless wavelength . The program allows for the
specification of these, however in many practical situations it is not the wavelength which is known, but the wave
period  . If this is the case, it is not enough to uniquely specify the wave problem, as if there is a current, any
current, then the period will be Doppler-shifted. Hence, it is necessary also to specify the current in such cases.
The value of this current will also affect the horizontal velocity components, and users of the program should be
aware of this and if it is unknown, some maximum and minimum values might be tried and their effects evaluated.

Usually all input data are to be specified in terms non-dimensionalised with respect to gravitational acceleration 
and mean depth , however an option is for water of infinite depth, to specify a value of.

There are three files necessary, which should be in the same directory as FOURIER.EXE:

6.1 DATA.DAT

The wave data is of the form as given in column 1 of Table 6-1. Any other information, such as that in column 2,
can be placed after column 1 on each line, such as we have done here, to label each line. A blank is also allowed.
The same data file is read by FOURIER, CNOIDAL, and STOKES. The latter two programs interpret the number 
as the order of the theory to use, described in §6.1.5 below.

Test wave (A title line to identify each wave)

0.5 : if a negative value is given here it is interpreted as − and the depth is infinite.

Wavelength Measure of length: ”Wavelength” or ”Period”

10. Value of that length:  or 

 respectively

1 Current criterion, 1 for Euler, or 2 for Stokes

0. Current magnitude, ̄1
√
 or ̄2

√


20  : Number of Fourier components or order of Stokes or cnoidal theory

1 Number of height steps to reach

FINISH Must be used to tell the program to stop - the file can continue after this

Table 6-1. Form of data to be supplied for each wave

Here we describe the nature of each element of the input data.

6.1.1 Description

A line containing any identifier or description of the wave, up to 100 characters

6.1.2 Wave height

The relative wave height is specified. There is a formula for the maximum wave height for a particular
wavelength , given as equation (3.1). In many problems, where it is the period that is specified it is not possible
to calculate the highest possible wave height a priori. The program, after it solves a wave, prints out the theoretical
maximum  for the calculated wave length. The user could then reconsider the value of  to specify. If a
negative value is given here it is interpreted as − and the depth is infinite.
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6.1.3 Wavelength or Period

If ”Wavelength” is chosen, then a value of  is then specified in the next line; if ”Period” then a value of
dimensionless period 

p
 is to be given.

That requires a value of gravitational acceleration , which is a function of latitude – because of the apparent
centrifugal acceleration due to the rotation of the earth,  is smaller nearer the equator than at the poles. Figure 6-1
shows the variation. In many hydraulic applications  = 10 ms−2 is quite acceptable, as 2% accuracy is enough,
because the theories or measurements are only approximate. If three-figure accuracy were required in a calculation
then

 = 9806− 0026 cos (2) in ms−2

where  is latitude (in radians). A sensible step would be to use  = 98 ms−2which is accurate to 01%. The
widespread use of  = 981 ms−2, is a strange historical accident, apparently following European and North
American textbooks, and is not justified. It can be seen in the figure that this is most appropriate to northern
Europe, Mongolia, parts of Siberia, Canada, Las Islas Malvinas and Tierra del Fuego– and is not justified for most
of the world’s population!

Figure 6-1. Variation of gravitational acceleration  ( ms−2) with latitude

6.1.4 Current

This is described in more detail in Appendix A.2 below. There are actually two definitions of currents, the first,
identified by 1 here is the ”Eulerian mean current”, the time-mean horizontal fluid velocity at any point denoted by
̄1, the mean current which a stationary meter would measure. In irrotational flow this is constant everywhere. A
second type of mean current is the depth-integrated mean current, the ”mass-transport velocity”, which we denote
by ̄2. If there is no mass transport, such as in a closed wave tank, ̄2 = 0. Usually the overall physical problem
will impose a certain value of current on the wave field, thus determining the wave speed. To apply the methods
of this theory if wave period rather than length is known, to obtain a unique solution it is necessary to specify both
the nature (1 or 2) and magnitude of that current. If the current is unknown, any horizontal velocity components
calculated are approximate only.

6.1.5 Number of Fourier components or Order of theory
FOURIER: The number of terms in the series  is the primary computational parameter in the program. The
program now has no limit (previously it was = 32), but for many problems, = 10 is enough – results show
that accurate solutions can be obtained with Fourier series of 10-20 terms, even for waves close to the highest,
although for longer and higher waves it may be necessary to increase . The adequacy of the particular value of
 used can be monitored by examining the output file SOLUTION.RES, where the spectra of Fourier coefficients
obtained as part of the solution is presented, the which are at the core of the method, as presented in equation
(A-5) for  = 1      , and the Fourier coefficients of the computed free surface, the as presented in equation
(B-9). The  decay rather more rapidly than do the  . The value of  should be sufficiently small (less
than 10−4 say) that there would be no identifiable high-frequency wave apparent on the surface plotted from the
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solution (cf. Figure 3-2 above).

STOKES: If  is in the range 1 to 5, that is the order of the theory used. Or, if the data file has a value of 
greater than 5, such as would be used for the Fourier program, the Stokes program resets it automatically to
 = 5, the most accurate version of the Stokes theory contained in this package.

CNOIDAL: If  is in the range 1 to 5, that is the order of the theory used. If one uses   5, such as
for the Fourier program, the Cnoidal program resets it automatically to  = 6, and uses Aitken convergence
enhancement for global quantities, giving rather better results. This is recommended.

6.1.6 Number of height steps

In application of the method to waves which are high and long, in common with other versions of the Fourier
approximation method, the Fourier method may converge to a wave of 1/3 of the wavelength (Dalrymple & Solana
1986, with comments by Fenton and Sobey noted in the References), but this can be remedied by solving for lower
waves of the same length and stepping upwards in height (Fenton 1988). This occurrence of this phenomenon is
made obvious from the Fourier coefficients which result, as only every third is non-zero. The present program
overcomes this by solving a sequence of lower waves, extrapolating forward in height steps until the desired height
is reached. For waves up to about half the highest ≈ 2 it is not necessary to do this, and a value of 1 in the
eighth line of the data file is all right, but thereafter it is better to take 2 or more height steps. For waves very close
to  for a given length it might be necessary to take as many as 20. The evidence as to whether enough have
been taken is provided by the spectrum, as noted above.

6.2 CONVERGENCE.DAT

This is a three-line file which controls convergence of the iteration procedure, for example:

Control file to control convergence and output of results
20 Maximum number of iterations for each height step; 10 OK for ordinary waves, 40 for highest
1.e-4 Criterion for convergence, typically 1.e-4, or 1.e-5 for highest waves

6.3 POINTS.DAT

This controls how much information is to be printed out afterwards to show the velocity and acceleration fields.
For example:

Control output (for graph plotting etc.)
50  , Number of points on free surface (the program clusters them near the crest)
8 Number of velocity/acceration profiles over half a wavelength to print out, including  = 0 and  = 2.
20 Number of vertical points in each profile, including points at bottom and surface.

7. Output files

The program produces output to the screen showing how the process of convergence is working. Three files are
produced:

7.1 SOLUTION.RES

After a heading block, including the theoretical highest wave for this length of wave, and the Stokes-Ursell num-
ber, the program prints out the global parameters of the wave train, where all quantities are shown first non-
dimensionalised with respect to ,  and , where  = 2 is the wavenumber of the wave, and then the value
non-dimensionalised with respect to  and depth . The results are as listed in Table 7-1. Following the global
parameters shown, the spectra of the velocity potential coefficients  and the surface elevation coefficients 

are given, for  = 1      , the two corresponding coefficients on each row. These spectra should be checked,
as suggested above, to ensure that the coefficients have become small enough that the solution has converged
satisfactorily, and that it has not converged to one which is 13 of the wavelength.
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Quantity Dimensionless w.r.t. Reference

  This document Fenton (1988)

Water depth   = 1

Wave length  = 2 

Wave height  

Wave period 
√
 




Wave speed 

 

√


Eulerian current ̄1

 ̄1

√
 (A-13) Symbol  , p358

Stokes current ̄2

 ̄2

√
 (A-14) Symbol  , p359

Mean fluid speed ̄

 ̄

√
 (A-5)

Wave volume flux,  = ̄− 

3 


3 p359

Bernoulli constant,  = −    p360

Volume flux 

3 


3 (A-3) p360

Bernoulli constant   (A-4) p360

Momentum flux 2 2 p362

Impulse 
√
3

√
 


3 p362

Kinetic energy 2 2 p362

Potential energy  2 2 p362

Mean square of bed velocity 2 2 p362

Radiation stress 
2 

2 p362

Wave power 5232 3252 p362

Fourier coefficients (dimensionless)   (A-5,B-5) p360, p362

1 1

     

 

Table 7-1. Quantities printed out at the head of file SOLUTION.RES

7.2 SOLUTION-FLAT.RES

In June 2019 I added a results file, containing the same results as SOLUTION.RES, and itemised in Table 7-1, but
with a flat structure so that the results are much more easily automatically read. The structure is:

• Single text line containing the name of the wave as specified in DATA.DAT

• Single text line stating that the following lines contain the solution

• 19 rows, each with an identifying integer plus two e-format floating point numbers giving the solution (1)
non-dimensionalised by  & , and (2)  & , plus a 40-character description of the physical variable.

•  , the numerical value of the number of terms in the Fourier series, plus some explanatory text ,

•  rows, each containing the number of the row  and two e-format floating point numbers giving the di-
mensionless Fourier coefficients  in the series for  (equation A-5) and  in the series for  (equation
B-9)

7.3 SURFACE.RES

This file contains co-ordinates of points on the surface, all given non-dimensionally with respect to the water depth
. It contains three columns, the first giving the  co-ordinates over a range from trough-crest-trough, clustered
quadratically near the crest for plotting purposes, = ( (2))

2
2 for  = −2+2, where

is the number of surface points defined in the description of file POINTS.DAT above. The second column is the free
surface elevation (total water depth) . The third column contains a check on calculations, the computed value
of the pressure on the surface  from equation (B-10), which should be zero, being typically of the order of
the last surface Fourier component  .
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7.4 FLOWFIELD.RES

This contains a number of profiles of velocity components and time derivatives, the number of profiles and the
number of points in each profile determined by file POINTS.DAT. For a sequence of (here equi-spaced) values
between 0 (crest) and 2 (trough), and then for each for a number of  from 0 (the bed) to the local free
surface elevation , quantities output on each line are shown in Table 7-2. Note that all are dimensionless with
respect to  and , the mean depth.





√


√






















= −
















=










Bernoulli check,
equation B-12

Table 7-2. Line of output in file FLOWFIELD.RES

7.5 Graphical output

The package includes a file that enables the plotting of data from the results files. When run with the GNUPLOT

program (http://www.gnuplot.info/), the file FIGURES.PLT (which uses file SETOUTPUT.PLT) produces three fig-
ures as shown here in Figure 7-1.

8. The program CNOIDAL.EXE

8.1 Use

This program accompanies the program FOURIER, and it can be used to give a check of the results of that program
for waves that are not too high. The program CNOIDAL.EXE should be placed in a subdirectory (maybe “Cnoidal”?)
of the directory where FOURIER.EXE is placed. CNOIDAL.EXE reads the same data files DATA.DAT, for the
wave data, and POINTS.DAT for control of the output. It looks for those files in the directory above where it
is placed. It produces three files in its own directory, which are very similar to the files created by FOURIER.
They are SOLUTION.RES, FLOWFIELD.RES, and SURFACE.RES. There is a Gnuplot file FIGURES-CNOIDAL-
FOURIER.PLT also in that directory, which can be used for plotting. Also placed in the Cnoidal directory are all
the C++ files necessary.

Note should be made here, that in line 7 of the data file DATA.DAT, what FOURIER reads as  , the number of
terms in the Fourier series, is treated differently by CNOIDAL. In the range of 1 to 5, it gives the order of the theory
to apply. If 6 or greater it defaults to 6 and uses the 5th order theory with Aitken enhancement of the series (see
below, and which gives the most accurate results). Velocity components, however, just use 5th order theory, which
was found to be best.

8.2 Results

Two waves were tested and results described here. The first is a low wave, so as to test both FOURIER.EXE and
CNOIDAL.EXE together. The wave rides on a large current, so as to test the ability of both programs to handle
that case. The wave characteristics are: height  = 03, period 

p
 = 20 (a long wave), and it rides on an

Eulerian current ̄1
√
 = 01, or about 1/10 of the wave speed. All results from the two programs agreed to

three decimal places, and are shown graphically in Figure 8-1. As the two theories use completely different means
of approximation and programs, while using the same equations, the results are an encouraging demonstration that
both programs are working well.

The second wave tested was a high and long wave, from Figure 9 of Le Méhauté et al. (1968), the highest and
longest of all the waves they tested, with  = 0548 and 

p
 = 2724. The experiments were conducted

in a closed wave tank, such that there is no net mass transport, giving the condition ̄2 = 0. They noted that that
wave was ”just below breaking”, which provides further evidence for Nelson’s assertion (Nelson, 1987 and 1994)
that the maximum wave height achievable in practice is actually only ≈ 055. Figure 8-2 shows the results
from FOURIER and CNOIDAL. Both describe the free surface very closely. However, there are some disagreements
between the two for horizontal fluid velocity (the results from FOURIER are expected to be more accurate), and it
can be seen that the agreement with experiment is not all that close. In the experiments the fluid velocities under
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Figure 7-1. Figures obtained by Gnuplot from output files produced by FOURIER for a wave of
height = 05 and length  = 10
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Figure 8-1. Results from the Fourier and Cnoidal programs for a low and long wave,
 = 03, 


 = 20, Eulerian current ̄1

√
 = 01.
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Figure 8-2. Results from the Fourier and Cnoidal programs for a high and long wave in a
closed tank such that ̄2 = 0, with experimental horizontal crest velocities from Figure 9 of Le
Méhauté et al. (1968)
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the wave crests were measured by tracking of marker particle motions: if anything this would under-estimate the
actual instantaneous velocities in the laboratory. Also, the experiments were not large, for this case a mean depth
of 017m. Overall, given engineering uncertainties of real problems, the cnoidal program works well and could be
used in practice if necessary, but probably more as a check of the Fourier program, and for waves not higher than
about ≈ 06.
Theoretical and computational aspects of the cnoidal program are given in Appendix C.

9. The program STOKES.EXE

9.1 Use

This program accompanies the program FOURIER, and it can be used to give a check of the results of that program
for waves that are not too high. The program STOKES.EXE should be placed in a subdirectory (maybe “Stokes”?)
of the directory where FOURIER.EXE is placed. STOKES.EXE reads the same data files DATA.DAT, for the wave
data, and POINTS.DAT for control of the output. It looks for those files in the directory above where it is placed.
It produces three files in its own directory, which are very similar to the files created by FOURIER. They are
SOLUTION.RES, FLOWFIELD.RES, and SURFACE.RES. There is a Gnuplot file FIGURES.PLT also in that directory,
which can be used for plotting. Also placed in the Stokes directory are all the C++ files necessary.

Note should be made here, that line 7 of the data file DATA.DAT gives the order of the Stokes theory that will be
used. A value greater than 5 will be automatically reset to 5. That 5th-order Stokes theory is as presented in Fenton
(1985), and unlike the cnoidal theory, nothing will be presented here. The program output is exactly the same
format as that of FOURIER.EXE, but appears in the directory where STOKES.EXE is located. It is just as if  = 5

had been used with FOURIER.EXE.

Whereas CNOIDAL.EXE makes use of Aitken transforms to improve convergence, STOKES.EXE does not do this.
The program automatically applies 5th-order theory.

9.2 Results

A test wave was solved with both STOKES.EXE and FOURIER.EXE. It is the example wave used in Fenton (1985,
p222), where wavelength is specified,  = 83333, which is approaching the generally recognised limit of Stokes
theory. With a relatively low wave height of  = 03, chosen so that the Stokes program should agree with
the generally-more accurate Fourier method as a check that both are operating correctly, the program calculated
a Stokes-Ursell number of  = 0264, indeed approaching the actual limit of applicability  6 1

2
described

above. An arbitrary small current of ̄1
√
 = 001 was used (which affected only the horizontal velocities).

Results are shown in Figure 9-1.
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Figure 9-1. Figures obtained by Gnuplot from output files produced by FOURIER and STOKES
for a wave of height = 03 and length  = 83333
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Appendix A. Theory

Here we present an outline of the theory, initially for steady flow in ( ) co-ordinates. If the fluid is incompress-
ible, in two dimensions a stream function ( ) exists such that the velocity components are given by

 =  and  = −

If motion is irrotational, then∇× u = 0 and it follows that  satisfies Laplace’s equation throughout the fluid:

2

2
+

2

 2
= 0 (A-1)

The kinematic boundary conditions to be satisfied are

( 0) = 0 on the bottom, and (A-2)

( ()) = − on the free surface, (A-3)

where  = () on the free surface and  is a positive constant denoting the volume rate of flow per unit length
normal to the flow underneath the stationary wave in the ( ) co-ordinates. In these co-ordinates the apparent
flow is in the negative  direction. The dynamic boundary condition to be satisfied is that pressure is zero on the
surface so that Bernoulli’s equation becomes

1

2

Ãµ




¶2
+

µ




¶2!
+  =  on the free surface, (A-4)

where  is a constant.

The basis of the method is to write the analytical solution for  in separated variables form

( ) = −̄  +

r


3

X
=1



sinh 

cosh 
cos  (A-5)

where ̄ is the mean fluid speed on any horizontal line underneath the stationary waves, the minus sign showing
that in this frame the apparent dominant flow is in the negative  direction. The 1      are dimensionless
constants for a particular wave, and  is a finite integer. The truncation of the series for finite  is the only
mathematical or numerical approximation in this formulation. The quantity  is the wavenumber  = 2 where
 is the wavelength, which may or may not be known initially, and  is the mean depth as shown on Figure 4-1.
Each term of this expression satisfies the field equation (A-1) and the bottom boundary condition (A-2) identically.
The use of the denominator cosh  is such that for large  the  do not have to decay exponentially, thereby
making solution rather more robust. For points on the free surface, where  = , for large 

sinh 

cosh 
∼ (−)

not nearly as large as the numerator and denominator would be.

If one were proceeding to an analytical solution, the coefficients  would be found by using a perturbation
expansion in wave height. Here they are found numerically by satisfying the two nonlinear equations (A-3) and (A-
4) from the surface boundary conditions. Substituting  = + () , into the surface equations and introducing
the variables  = ̄ − , the volume flux due to the waves which is actually a positive quantity, and  =

− , the energy per unit mass with datum at the mean water level, and dividing through to make the equations
dimensionless:

X
=1



∙
sinh 

cosh 

¸
cos  − ̄

p
  ( − )− 

s
3


= 0 and (A-6)

1

2

⎛⎝−̄p +

X
=1



∙
cosh 

cosh 

¸
cos 

⎞⎠2

+
1

2

⎛⎝ X
=1



∙
sinh 

cosh 

¸
sin 

⎞⎠2

+ ( − )−  = 0 (A-7)
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both to be satisfied for all . In both equations, we will never evaluate the terms in square brackets as they are
written, for both numerators and denominators can become very large. Instead we re-write them and evaluate them
in the forms

( ) =
cosh 

cosh 
= cosh ( ( − )) + tanh  sinh ( ( − )) , (A-8a)

( ) =
sinh 

cosh 
= sinh ( ( − )) + tanh  cosh ( ( − ))  (A-8b)

The two hyperbolic functions of  ( − ) here are much smaller than cosh , while the tanh  function is
not a problem, as it simply goes to 1 for large arguments.

To solve the problem numerically these two equations are to be satisfied at a sufficient number of discrete points
so that we have enough equations for solution. If we evaluate the equations at  + 1 discrete points over one half
wave from the crest to the trough for = 0 1     , such that  = 2 and  =  , and where
 = (), then (A-6) and (A-7) provide 2 + 2 nonlinear equations in the 2 + 5 dimensionless variables:
 for  = 0 1      ;  for  = 1 2      ; ̄

p
; ; 

p
3; and . We now consider more

equations and variables.

An extra equation is the expression requiring that the mean of the dimensionless depths  be , simply using
the trapezoidal rule:

1



Ã
1

2
(0 +  ) +

−1X
=1



!
−  = 0 (A-9)

For quantities which are periodic such as here, the trapezoidal rule is very much more accurate than usually
believed. It can be shown that the error is of the order of the last ( th) coefficient of the Fourier series of the
function being integrated. As that is essentially the approximation used throughout this work, where it is assumed
that the series can be truncated at a finite value of , this is in keeping with the overall accuracy.

In practice the physical dimensions of mean water depth  and wave height are known giving a numerical value
of  for which an equation can be provided connecting the crest and trough heights 0 and  respectively:
 = 0 −  which we write in terms of our dimensionless variables as

0 −  − 



= 0 (A-10)

A.1 Specification of wavelength

In some problems we know the wavelength  and so we have a numerical value for , that we write here as an
equation

− 2 

= 0 (A-11)

and the problem is now closed.

A.2 Specification of wave period and current

In many problems it is not the wavelength  which is known but the wave period  as measured in a stationary
frame. The two are connected by the simple relationship

 =



 (A-12)

where  is the wave speed, however it is not known a priori, and in fact depends on the current on which the waves
are travelling. In the frame travelling with the waves at velocity  the mean horizontal fluid velocity at any level
is −̄ , hence in the stationary frame the time-mean horizontal fluid velocity at any point denoted by ̄1, the mean
current which a stationary meter would measure, is given by

̄1 = − ̄  (A-13)

In the special case of no mean current at any point, ̄1 = 0 and  = ̄ , which is Stokes’ first approximation to the
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wave speed, usually incorrectly referred to as his ”first definition of wave speed”, and is that relative to a frame in
which the current is zero. Most wave theories have presented an expression for ̄ , obtained from its definition as
a mean fluid speed. It has often been referred to, incorrectly, as ”the wave speed”.

A second type of mean fluid speed or current is the depth-integrated mean speed of the fluid under the waves in
the frame in which motion is steady. If is the volume flow rate per unit span underneath the waves in the ( )

frame, the depth-averaged mean fluid velocity is −, where  is the mean depth. In the physical ( ) frame,
the depth-averaged mean fluid velocity, the ”mass-transport velocity”, is ̄2, given by

̄2 = − (A-14)

If there is no mass transport, such as in a closed wave tank, ̄2 = 0, and Stokes’ second approximation to the wave
speed is obtained:  = . In general, neither of Stokes’ first or second approximations is the actual wave speed.
Usually the overall physical problem will impose a certain value of current on the wave field, thus determining the
wave speed. To apply the methods of this section, where wave period is known, to obtain a unique solution it is
also necessary to specify the magnitude and nature of that current.

Appendix B. Program details

B.1 Initial solution

We calculate the initial values from linear wave theory, assuming zero current. The well-known solution for angular
frequency  = 2 in terms of  is

2 =  tanh  (B-1)

If the wave period and hence  is known, it is necessary to solve for . The equation could be solved using
standard methods for solution of a single nonlinear equation, however Fenton & McKee (1990) have given an
approximate explicit solution:

 ≈ 2



µ
coth

µ³

p


´32¶¶23
 (B-2)

This expression is an exact solution of (B-1) in the limits of long and short waves, and between those limits its
greatest error is 1.5%. Such accuracy is adequate for the present approximate purposes. Having solved for ,
linear theory can be applied for an assumption of zero current in relating wavelength and period. We set  = 0,  =
̄22 (noting that it would have been nicer if Fenton (1988) had defined  as being solely due to the wave motion
 = −−̄22, so that it would be zero in the small wave limit). We assume  = + 1

2
 cos  and substitute

into the surface equations with 1 non-zero and all higher terms in the series zero. The kinematic boundary
condition (A-6) gives, taking the terms in the square brackets to be unity, thereby linearising, and dropping factors
of cos :

1 tanh − ̄
p




2
= 0 (B-3)

and repeating for the dynamic boundary condition (A-7), expanding the terms in brackets, considering only linear
terms, and dropping factors of cos :

−̄
p
1 +



2
= 0 (B-4)

with solutions ̄
p
 =

√
tanh , that we could have written down from equation (B-1), making the zero

current approximation ̄ = . What is more useful here is the other solution obtained from the pair of equations,
1 = 2

√
tanh . Hence we have the linear solution, and in view of the common occurrence, we use the

21



Use of the programs FOURIER, CNOIDAL and STOKES for steady waves John D. Fenton

symbol 0 =
√
tanh  borrowed from Fenton (1985).

 = +
1

2
 cos




 for = 0    

̄
p
 = 

p
 = 0

1 =
1

2



0
  = 0 for  = 2     

 = 0

 = 1
2

̄2


= 1

2
20 

For the currents, we use ̄1 or ̄2, if we have a value. Otherwise we assume zero.

B.2 Dimensionless variables

Here we set out and number all the variables above, made dimensionless with respect to , , and wavenumber
, and in the last column add the initial linear solution. Once an initial value of  has been calculated, all other
quantities can be calculated sequentially.

Variable reference Dimensionless Physical Initial value from

number  variable  quantity linear theory

1  Depth Known  or eqn (B-2)

2  Wave height × ()

3 
√
 Period 20

4 

 Wave speed 0

5 ̄1

 Mean Eulerian current 0 or

√
 × ̄1

√


6 ̄2

 Mean Stokes current

√
 × ̄2

√
 or 0

7 ̄

 Mean fluid speed in frame of wave 0

8 

3 Discharge due to waves 0

9  Energy due to waves 1
2
2
0

10      + 10 , = 0  + 1 surface elevations + 1
2
 cos 



 + 11     2 + 10 , = 1  Fourier coefficients 1 =
1
2
0, 2 = 0,   

Table B-1. List of dimensionless variables to be determined

B.3 Equations

In all the following it is assumed that values of  and  are known, plus a value of either  or values of  and
either ̄1 or ̄2.

Equation 1 – Wave height in terms of

 − × () = 0

Equation 2 – Wave height in terms of wavelength or period, whichever is known

 − ()× 2 = 0 or

 − ¡2
¢× ³p

´2
= 0

Equation 3 – Definition of wave speed  =  , equation (A-12) in dimensionless terms,


p
 × 

p
 − 2 = 0
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Equation 4 – Mean Eulerian current, equation (A-13)

̄1
p
 + ̄

p
 − 

p
 = 0

Equation 5 – Mean mass-transport current, equation (A-14) converted to use 

̄2
p
 + ̄

p
 − 

p
 − 

p
3


= 0

Equation 6 – From known or assumed numerical value of one current or the other ̄1
√
 or ̄2

√
 (May 2013:

the program had been using
√
 rather than

√
 here)

̄
p
 − ̄√


×
√
 = 0 for = 1 or 2

Equation 7 – Mean value of  is , equation (A-9)

1



Ã
1

2
(0 +  ) +

−1X
=1



!
−  = 0

Equation 8 – Definition of wave height, equation (A-10)

0 −  −  = 0

Equations 9 to+9 – Kinematic free surface boundary condition (A-6): using equation (A-8b) and with  =

 for = 0 :

X
=1

( ) cos



− ̄

p
  ( − )− 

s
3


= 0

Equations  +10 to 2 +10 – Dynamic free surface boundary condition (A-7): using equations (A-8) and with
 =  for = 0 :

1

2

⎛⎝−̄p +

X
=1

( ) cos




⎞⎠2

+
1

2

⎛⎝ X
=1

( ) sin




⎞⎠2

+ ( − )−  = 0

B.4 Enumeration of variables and equations

From Table B-1 it can be seen that there are 2 + 10 variables and here we have written out 2 + 10 equations.
Some formulations of the problem (e.g. Dean, 1965) allow more surface collocation points and the equations are
solved in a least-squares sense. This is a good idea and in general would be thought to be desirable, but in practice
seems not to make much difference, and here the procedure of Rienecker & Fenton (1981) and Fenton (1988) is
followed, where the same numbers of equations as unknowns is used. In the computer program the numbering of
variables follows that of Fenton (1988).

B.5 Computational method

The system of nonlinear equations can be iteratively solved using Newton’s method. If we write the system of
equations as

(x) = 0 for  = 1     2 + 10

where  represents equation  and x = {   = 1     2 + 10}, the vector of variables  (there should be
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no confusion with that same symbol as a space variable), then if we have an approximate solution x() after 
iterations, writing a multi-dimensional Taylor expansion for the left side of equation  obtained by varying each of
the () by some increment () :

 (x(+1)) ≈  (x()) +

2+10X
=1

µ




¶()

()
 

If we choose the () such that the equations would be satisfied by this procedure such that  (x(+1)) = 0, then

we have the set of linear equations for the () :

2+10X
=1

µ




¶()

()
 = − (x()) for  = 1     2 + 10

which is a set of equations linear in the unknowns () and can be solved by standard methods for systems of
linear equations. Having solved for the increments, the updated values of all the variables are then computed for

(+1)
 = 

()
 + 

()
 for all the . As the original system is nonlinear, this will in general not yet be the required

solution and the procedure is repeated until it is.

It is possible to obtain the array of derivatives of every equation with respect to every variable,  by
performing the analytical differentiations, however as done in Fenton (1988), it is rather simpler to obtain them
numerically. That is, if variable  is changed by an amount  , then on numerical evaluation of equation  before
and after the increment (after which it is reset to its initial value), we have the numerical derivative




≈  (1      +       2+10)−  (1           2+10)




The complete array is found by repeating this for each of the 2 +10 equations for each of the 2 +10 variables.
Compared with the solution procedure, which is(3), this is not a problem, and gives a rather simpler program.

B.6 Post-processing to obtain quantities for practical use

Once the solution has been obtained, quantities rather more useful for physical calculations can be evaluated,
notably surface elevations and velocities and accelerations.

It can be shown from (A-5) and the Cauchy-Riemann equations

Φ


=




and

Φ


= − 




where Φ is the velocity potential in the frame moving with the wave, and  = − , such that

Φ( ) = −̄  +

r


3

X
=1



cosh 

cosh 
sin 

In the physical frame, the now unsteady velocity potential (  ) is written

(  ) = Φ(−  ) +  (− )

such that the horizontal velocities in the two systems are related by

 =



=

Φ


+  =  + 

which result would have been obtained by just adding  to Φ, but it is slightly simpler to have  expressed also as
a function of − . The additional function of time does not affect the dynamics, it will merely affect the manner
in which we subsequently write the unsteady Bernoulli equation. Now we have

(  ) =
¡
− ̄

¢
(− ) +

r


3

X
=1



cosh 

cosh 
sin  (− )  (B-5)
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The velocity components anywhere in the fluid are given by  =   = :

 = − ̄ +

r




X
=1



cosh 

cosh 
cos  (− )  (B-6)

 =

r




X
=1



sinh 

cosh 
sin  (− )  (B-7)

and as  is a function of −  we have simply




= −


= − (B-8)

Acceleration components can be obtained simply from these expressions by differentiation, and from the Cauchy-
Riemann equations, and are given by.




= −× 


 where




= −

p


X
=1

2

cosh 

cosh 
sin  (− ) 




= −× 


 where




=
p


X
=1

2

sinh 

cosh 
cos  (− ) 




=









= −




The total material accelerations of a fluid particle are then




=




+ 




+ 




 and




=




+ 




+ 






The free surface elevation at an arbitrary point requires another step, as we only have it at discrete points ,
obtained as part of the solution. We take the cosine transform of the  + 1 surface elevations:

 =
2



X00

=0

 cos



for  = 0    

where Σ00 means that it is a trapezoidal-type summation, with factors of 1/2 multiplying the first and last contribu-
tions. The cosine transform could be performed using fast Fourier methods, but as is not large, simple evaluation
of the series is reasonable. It is easily shown that 0 = 2, twice the mean value of the . The interpolating
cosine series for the surface elevation is then

( ) =

X00

=0

 cos  (− )  (B-9)

which can be evaluated for any  and , taking care to use the trapezoidal sum. Of course the first term is 1
2
×0 =

, the dimensionless mean depth.

The pressure at any point in the fluid can be evaluated using Bernoulli’s theorem, but most simply in the form from
the steady flow, but using the velocities as computed from (B-6) and (B-7):




= −  − 1

2

³
(− )

2
+ 2

´
 (B-10)

We consider how this relates to the unsteady Bernoulli equation




+




+  +

1

2

¡
2 + 2

¢
= () (B-11)

where () is an arbitrary function of time, determined by boundary conditions. Substituting equation (B-10) for
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pressure into this gives




+− () + − 1

2
2 = 0

From equation advect we have +  = 0, giving the expression for  which is, in fact, a constant:

 = − 1
2
2

so we have the unsteady Bernoulli equation in the form




+




+  +

1

2

¡
2 + 2

¢− µ− 1
2
2
¶
= 0 (B-12)

As a partial check on the subroutine POINT included in the C++ program, where , velocities  and  (and
accelerations) are calculated, it also calculates the value of the left side of this equation.

Appendix C. Theoretical and computational aspects of
CNOIDAL

C.1 Summary

Fenton (1979) presented a method for the computer generation of high-order cnoidal solutions for periodic waves.
Results were expressed in terms of the relative wave height to depth. It was shown how it is rather simpler to use the
trough depth  as the depth scale in presenting results, and that the effective expansion parameter is not simply

but is actually that divided by the elliptic parameter used in the theory. For the expansion parameter to be small
and for the series results to be valid, the short wave limit is excluded. In this way the cnoidal theory breaks down
in deep water (short waves) in a manner complementary to that in which Stokes theory breaks down in shallow
water (long waves), (Fenton 1985). For moderate waves, results were good when compared with experiment, but
for higher waves the velocity profile showed exaggerated oscillations and it was found that ninth-order results were
worse. These results were unexpectedly poor.

In a review article the author (Fenton 1990) considered cnoidal theory as well as Stokes theory and Fourier ap-
proximation methods. The approach to cnoidal theory in Fenton (1979) was re-examined. It was found that if
the series for velocity were expressed in terms of the shallowness (effectively (depthlength)2) rather than relative
wave height, as was done by Chappelear (1962), then results were very much better, and justified the use of cnoidal
theory even for high waves. This is in accordance with the fundamental approximation of the cnoidal theory being
an expansion in shallowness. That review article also incorporated the fact that the wave theory does not determine
the wave speed, and that neither Stokes’ first nor second approximations to wave speed are necessarily correct.
In general it is necessary to incorporate the effects of current, as had been done for numerical wave theories in
Rienecker & Fenton (1981) and for high-order Stokes theory in Fenton (1985).

A rather longer review article of cnoidal theory was presented by Fenton (1999).

C.2 Alternative expressions for elliptic quantities

As is close to unity for most applications of the cnoidal theory, a huge problem is presented for many practical
problems, and that is because the formulae presented in references such as Abramowitz & Stegun (1965)1 are most
rapidly convergent in the limit  → 0, and may be slowly convergent, if at all, in the other limit, which is of
interest to us here. Such methods as the Landen transform are presented, for which convergence is assured, but
that is a procedure, rather than explicit approximations. Fenton & Gardiner-Garden (1982) used Jacobi’s imaginary
transformation to recast the better-known expressions for theta functions so that they are most rapidly convergent in
the limit as the parameter tends to unity. These results were then used to give alternative expressions for the elliptic
functions which also converge most rapidly in the limit where previously-presented expressions do not converge.
Finally, alternative methods for the calculation of complete elliptic integrals were developed. These are shown to

1 http://people.math.sfu.ca/~cbm/aands/frameindex.htm
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be the simple complement of well-known methods but, remarkably, seem to be unknown. These expressions have
been implemented in the accompanying program.

C.3 Series enhancement

Fenton (1972) used what, at the time of the 1970s, were known as Shanks transforms to transform the series and
improve convergence of solitary wave solutions. In the meantime, it has been discovered that the original technique
goes back to Aitken, and they are now referred to as Aitken transformations. They take a series and attempt to
mimic the behaviour of the series as if it had an infinite number of terms. The method takes three successive
terms in a sequence (such as the first, second and third order solutions for a wave property), and extrapolates the
behaviour of the sequence to infinity, hopefully mimicking the behaviour of the series if there were an infinite
number of terms. The method can work surprisingly well. It is easily implemented: if the last three terms in a
sequence of  terms are −2, −1, and , an estimate of the value of ∞, denoted by 0 is given by

0 ≈  − ( − −1)
2

( − −1)− (−1 − −2)
 (C-1)

This is the form which is most suitable for computations, when in the possible case that the sums have nearly
converged and both numerator and denominator of the second term on the right go to zero the result is less liable
to round-off error.

The transform is simply applied and can be used in many areas of numerical computations. It gives surprisingly
good results, but its theoretical justification is limited and sometimes it does not work well. Whereas Padé approx-
imants are more general, Aitken transforms are rather simpler to apply – one just has to have three numbers to
obtain a better estimate of their likely converged result. The author has tested the use of both Aitken transforms
and Padé approximants in applying the cnoidal theory described in this work. A limitation to Padé approximation
became quickly obvious, when at the first step in practical application, solving an equation for the wavelength,
approximating a quartic in  by a [22] Padé approximant, with a quadratic in numerator and denominator,
the latter passed through zero for an intermediate value of , such that in the vicinity of that point very wildly
varying results were obtained. The author considered that this was sufficiently dangerous that generally Padé
approximants could not be recommended for the approximation of fifth-order cnoidal theory.

In practice, obtaining solutions for given values of wavelength and wave height, the use of the Aitken transforms
everywhere gave better results than just using the raw series in the case of global wave quantities such as   etc.
which are independent of position, and it is recommended that Aitken transforms be used to improve the accuracy
of all series computations for those quantities. They are of course trivially implemented, given say, three numbers.

However, for fluid velocities it has been found that Aitken transforms could lead to irregularities in the results, and
the program uses un-transformed expressions for the velocity fields, with results such as have been presented in
Figures 8-1 and 8-2 above.

C.4 Initial solution for the elliptic integrals

The quantity  is a parameter that occurs throughout all the cnoidal theory. For long waves, for which cnoidal
theory is applicable, it is usually close to 1 and indeed is usually remarkably close to unity, which is why the
alternative expressions for elliptic quantities described above were developed. For a solitary wave, of infinite
wavelength, it is = 1. A computational problem is that it has to be calculated from the wave data before anything
else, which involves solving a transcendental equation, in which part of the equation varies strongly logarithmically
with  as  → 1. In Fenton (1999, p14) it was shown that, at first order a simple approximation for  in terms
of Ursell number Ur and the Stokes-Ursell number SU from equation (3.3) gives alternative expressions:

 ≈ 1− 16 −
√
3Ur4 = 1− 16 −()

√
34 ≈ 1− 3−8

√
SU (C-2)

In view of Hedges’ suggested limitation (Hedges 1995) that cnoidal theory be applied only for Ur  40 (or
SU  12) it follows that  is always greater than 093 if the theory is used within its recommended limit. In
many practical problems, the waves are so long that is very close to unity. For example, with a value of SU = 1,
just twice the recommended minimum value, ≈ 099.
Now there are different equations to solve to improve this estimate, presuming that the initially-known quantities
are dimensionless wave height and either dimensionless wavelength  or period 

p
 plus dimensionless
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current ̄1
√
 or ̄2

√
. Consider Fenton (1999, eqn A.7) for wavelength in terms of the known  plus

and () = ()(), which is the ratio of elliptic integrals of the first and second kind, giving to second
order




= 4 ()

µ
3




¶−12Ã
1 +

µ




¶µ
5

4
− 5
8
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2
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¶
+

µ




¶2
(  ) +   

!
 (C-3)

This is a transcendental equation for , given numerical values of  and . The variation of () with
 is very rapid in the limit as  → 1, as it contains a singularity in that limit, hence, gradient methods such
as the secant method for this might break down. The author originally preferred to use a bisection method, for
which reference can be made to any introductory book on numerical methods. However, in preparing the current
computer program and this note, the following simpler approach was suggested, re-writing equation (C-3) in terms
of():

 () =
1

4





¡
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¢12
1 +

¡



¢ ³
5
4
− 5

8
− 3

2

()

()

´
+   

 (C-4)

The variation of the right side with() is not very strong, and so this expression can be evaluated in an iterative
sense, at each iteration using the procedure suggested at the end of Fenton & Gardiner-Garden (1982) to obtain
from the iterated value of. This procedure worked very well, requiring little programming and with convergence
rapid and assured.

In the case of wave period being known, the two alternative approaches are:

Eulerian current ̄1
√
 known: equation (A-13) can be re-arranged to give
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 (C-5)

where ̄
√
 is given as a function of  =  = ()  () and  and () in the theory, and where

in the equation and in ,  is given as a series in (known) and and (). To write out the expressions
would be very complicated; to evaluate them numerically by computer is not. Equation (C-5) can be solved
iteratively in the same manner as for equation (C-4).

Stokes current ̄2
√
 known: equation (A-14) can be re-arranged in the same manner to give

() =
1
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 (C-6)

where the dimensionless discharge 
p
3 is given as a function of  =  = ()  () and  and

() in the theory.

C.5 Modification in July 2019

Thomas Lykke Andersen of the Department of Civil Engineering at Aalborg University wrote to me saying that for

very long and high waves, whenUr is large, as ≈ 1− 16 −
√
3Ur4 (equation C-2), the value of is so close to

1 that when when the elliptic integral of the first kind() was evaluated using the approximations of Fenton &
Gardiner-Garden (1982), requiring the evaluation of log (1−), the round-off error in evaluating 1− gave it as
zero, for which, of course, the logarithmic function failed. The program has been modified for problems in which

1 = 1− ≈ 16 −
√
3Ur4 is smaller than, say 10−8 such that can only be stored correct to some six figures.

In such cases, initially it no longer solves for, but instead for the value of, as appearing in the expressions in
the previous section, while everywhere else setting = 1.

Also, in evaluating all the elliptic functions and integrals, instead of using the general subroutines, the simpler
approximations of Fenton & Gardiner-Garden (1982), as shown in Table 2 of Fenton (1999) are now used, so that
the programs are simpler. The approximations are accurate to 5 figures for   1

2
, so for the values of   09

used for cnoidal theory, they are very accurate.
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